Ян (ahiin) wrote,
Ян
ahiin

Решение

Задачку и решение я честно попячил у уважаемого mathclimber.

Напоминаю условие:

На плоскости раскиданы N точек, причём известно, что площадь треугольника с вершинами в любой тройке из этих точек не превосходит 1. Докажите, что существует треугольник площади 4, который содержит все эти N точек.



Из множества всевозможных треугольников выберем тот, у которого наибольшая площадь (если таковых несколько, то можно взять любой из них). Пусть это синий треугольник на картинке. Построим (оранжевый) треугольник с параллельными нашему сторонами, проходящими через вершины; очевидно, площадь оранжевого треугольника в четыре раза больше, чем синего.
364397_original
Докажем, что все точки должны лежать в этом оранжевом треугольнике. В самом деле, пусть имеется точка y где-то вне. Тогда мы сможем образовать треугольник большей площади, как показано на рисунке. Но это противоречит нашему предположению, что у синего треугольника наибольшая из возможных площадь. Q.E.D.
Tags: математика, ответ к задачке
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 17 comments